

Base Level Engineering Data Delivery Discussion

Gila County, AZ March 31, 2022

Discussion Topics

- FEMA Flood Risk Studies Overview
- Flood Study Types
- What is Base Level Engineering?
- Gila County BLE Scope
- BLE Approach and Mapping
- BLE Data Delivery
- Questions

Flood Risk Studies - An Overview

Increasing Resilience Together

Levels of FEMA Flood Hazard Studies

Creating Scalable Modeling

Base Level Engineering

- Automated engineering analysis using LIDAR topographic data to provide flood hazard mapping where there is currently a gap
 - For local use; leveraged by counties to determine building criteria in and around floodplains
 - Allows FEMA to assess the adequacy of current/effective flood Zones A & D
 - Flood hazard data that provides for broad risk communication
 - For incorporation into a future FIRM update

Base Level Engineering High Resolution Elevation Data Required

Map Modernization 10M and 30M DEMs were used

Base Level Engineering Products

Minimum Data Produced

- Hydraulic Modeling (10%, 4%, 2%, 1%, 1%+, 1%-, and 0.2% annual chance floods)
- 1% and 0.2% Floodplains
- 1% and 0.2% Water Surface Grids

Standards.

80318[618

Gila County – Current Scope of Work

Gila County, Arizona Base Level Engineering

 Current study streams, totaling 145 miles, are associated with existing Zone A areas

Legend

Gila County – LiDAR Availability

Base Level Engineering – 1D vs 2D model areas

- Types of Analysis
 - ID and 2D based on
 - Complex flow patterns
 - Flow leaving the main channel
 - Geomorphic (topography) review of the vicinity
- Peak Flows Computed from Rural Regression Equations
- Tie into detailed studies

Base Level Engineering (BLE) - Hydrology

- Hydrology Approach
- Created Stream Network and Watershed Delineation
- Peak Flows Computed from Rural Regression Equations
- Post-Burn Hydrology flows Calculated using excel spreadsheet
- 10yr flows increased by 195%
- 100yr flows increased by 100%
- 500yr Flows increased by 85%

Base Level Engineering (BLE) - Hydraulics

- HEC-RAS models for every stream for 10%, 4%, 2%, 1%, 1%+, 1%-, and 0.2% annual chance floods
- Spatial datasets Geodatabase
 - Stream centerlines (WTR_LN) attributed with water name & model number
 - Cross sections (XS) attributed with water/model name, station, thalweg elevation, water surface elevations and flow rates for all events modeled
 - Backwater processed floodplain polygons (FP_##PCT) and corresponding water surface elevation grids (WSE_##pct for the 1% and 0.2% flood events
 - **BFE proxy cross sections** (PROXY BFE) with the 1% water surface elevation
 - Issue Polygon (AOSI_AR) identifying modeling and mapping challenges

Base Level Engineering (BLE) – Complex Areas Mapping

Floodplain Challenges:
Recommended Solution - Inundation depth (0.5 Feet) and add "ALL (0 feet)" depth to follow the flow path (see Arrows)

BLE – DELIVERABLES ORGANIZATION

Base Level Engineering (BLE) - Deliverables

- Organized by County
- Folder Organization

Appendix A - BLE_H&H_Flow Charts.pdf
 Appendix B - Manning's n-Value-appendix.pdf
 Appendix C R9_BLE_QAQC_Checklist.docx
 Appendix C R9_BLE_QAQC_Checklist.pdf
 Appendix D - BLE_Database_Appendix.pdf
 Base_Level_Engineering_Report.docx
 Base_Level_Engineering_Report.pdf

1	General
2	Hydraulic_Models
3	Spatial_Data
4	Supplemental_Data
	2

Hydraulic_Models		
	Name	

Hydraulic_Models > HEC_RAS_1D_Models

~

^

Name

NorthGila_1D_final_RAS_models
SouthGila_1D_final_RAS_models

4

Gridded_Hydrology_Deliverables Hydraulic_QC_Files Modeled_Bridges_and_Culverts NBI_Data Post-Burn_Hydrology_Calculator Road_Intersections

spana_outo v	
04007C_BLE.gdb	SFHA_10Pct.prj
04007C_Hydraulics_metadata.xml	SFHA_10Pct.shp
SFHA_0_2Pct.dbf	SFHA_10Pct.shx
SFHA_0_2Pct.prj	
SFHA_0_2Pct.shp	
SFHA_0_2Pct.shx	
SFHA_01Minus.dbf	
SFHA_01Minus.prj	
SFHA_01Minus.shp	
SFHA_01Minus.shx	
SFHA_01Pct.dbf	2
SFHA_01Pct.prj	3
SFHA_01Pct.shp	
SFHA_01Pct.shx	
SFHA_01Pct_Less_0_5Ft.dbf	
SFHA_01Pct_Less_0_5Ft.prj	
SFHA_01Pct_Less_0_5Ft.shp	
SFHA_01Pct_Less_0_5Ft.shx	
SFHA_01Pct_Less_1Ft.dbf	
SFHA_01Pct_Less_1Ft.prj	
SFHA_01Pct_Less_1Ft.shp	
SFHA_01Pct_Less_1Ft.shx	
SFHA_01Pct_Less_3Ft.dbf	
SFHA_01Pct_Less_3Ft.prj	
SFHA_01Pct_Less_3Ft.shp	
SFHA_01Pct_Less_3Ft.shx	
SFHA_01Plus.dbf	
SFHA_01Plus.prj	
SFHA_01Plus.shp	
SFHA_01Plus.shx	
SFHA_02Pct.dbf	
SFHA_02Pct.prj	
SFHA_02Pct.shp	
SFHA_02Pct.shx	
SFHA_04Pct.dbf	
SFHA_04Pct.prj	
SFHA_04Pct.shp	
SFHA_04Pct.shx	
SFHA_10Pct.dbf	

Spatial Data

HOW TO USE BLE DATA NOW?

BLE For Amendment Requests

- 1% annual chance flood elevations from BLE can be used for LOMA and LOMR-F applications
 - Applicable in Zone A areas (unnumbered)
- Current effective SFHA boundary has to be used to determine whether structure is in/out of SFHA for flood insurance purposes

BLE For Floodplain Management

- WSELs produced exceed the FEMA 265 requirements
- Best available data for unnumbered Zone As
- Can be used to regulate unmapped areas
- Communities encouraged to adopt the data
- To be used in lieu of FEMA 265 where available
- 1-98 is currently under revision and will incorporate BLE information

Guidance for Flood Risk Analysis and Mapping

Base Level Engineering (BLE) Analyses and Mapping

February 2018

BLE Benefits for Mitigation

Creates data for conversations about existing flood risk and ways to reduce future losses

- Assist in understanding that the current FIRM does not adequately identify flood hazards
- Provides engineering data and initial review of expected flood hazards before a more detailed study is initiated
- Insights into how modifications of the built environment may change risk and future flood losses

Frequently Asked Questions

- 1. How can I view the Base Level Engineering (BLE) results in my community?
- 2. Does BLE replace the Flood Insurance Rate Map for my community?
- 3. Can BLE be used to update the FIRMs in my community?
- 4. Will all BLE streams studied be included in a Flood Insurance Rate Map update?
- 5. Why is BLE data being provided so early in the process before FEMA updates FIRM Panels?
- 6. How can my community use this data?

- 7. Can BLE results be used to determine Base Flood Elevations in my community?
- 8. How can I use the BLE information to inform future building and development in my community?
- 9. Can my community adopt the BLE information through my Local Floodplain Management Ordinance?

Questions? Comments?

Michael J Bishop Deputy of Risk Analysis Branch Chief 510-502-9935 michael.j.bishop@fema.dhs.gov

Nancy Steinberger FEMA Civil Engineer 202-430-4945 Nancy.Steinberger@fema.dhs.gov Sarada Kalikivaya STARR II BLE Project Manager

469-406-3986 Sarada.Kalikivaya@AtkinsGlobal.com

Selena Foreman STARR II Task Order Manager / Lead Engineer

Iwan Thomas STARR II Lead Engineer

